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Abstract. In the proof of Gilbert-Pollak conjecture on the Steiner ratio, a result of Du and Hwang on 
a minimax problem played an important role. In this note, we prove a continuous version of this 
result. 

The Steiner tree problem is a classic intractable problem [6] with many applica- 
tions in the design of computer circuits, long-distance telephone lines, or mail 
routing, etc. Given a set of points in a metric space, the problem is to find a 
shortest network interconnecting the points in the set. Such a shortest network is 
called the Steiner minimum tree (SMT) on the point set. 

A minimum spanning tree on a set of points is the shortest network inter- 
connecting the given points with all edges between the points. While the Steiner 
tree problem is intractable, the minimum spanning tree can be computed pretty 
fast. The Steiner ratio in a metric space is the largest lower bound for the ratio 
between lengths of a minimum Steiner tree and a minimum spanning tree for the 
same set of points in the metric space, which is a measure of performance for the 
minimum spanning tree as a polynomial-time approximation of the minimum 
Steiner tree. Determining the Steiner ratio in the Euclidean plane was a hard 
problem. Gilbert and Pollak [7] conjectured that it equals V~-~- Through many 
efforts [1, 2, 3, 5, 8, 9, 10], Du and Hwang [4] finally proved this conjecture. 

In Du and Hwang's proof, a new approach was discovered [4]. The center part 
of this approach is a new theorem about the following minimax problem: 

min max f/(x) 
xEX iE1 

where X is a convex region in the n-dimensional Euclidean space R n, I is a finite 
index set, and the f,.(x)'s are continuous functions over X. The theorem can be 
stated as follows. 
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T H E O R E M  1 (Du and Hwang). Let g(x)= maxie , f~(x). I f  every fi(x) is a 
concave function, then the minimum value of  g(x) over the polytope X is achieved 
at some point x* satisfying the following condition: 

(*) There exists an extreme subset Z of  X such that x* E Z and the set 
I(x*)(={i [ g(x*) =f//(x*)}) is maximal over Z. 

Here,  a subset Z of X is called an extreme subset of X if 

x, y E X  } 
a x + ( 1 - a ) y E Z f o r s o m e O < a < l  � 9  y E Y .  

In this note, we prove the following continuous version. 

T H E O R E M  2. Let f(x, y) be a continuous function on X x Y where X is a 
polytope in R m and Y is a compact set in R n. Let g(x) = maXyev f(x, y). I l l (x ,  y) 
is concave with respect to x, then the minimum value of  g(x) over X is achieved at 
some point 2 satisfying the following condition: 

(*) There exists an extreme subset Z of X such that 2 E Z and the set 1(2) 
(={y  [ g(2) =f(2,  y)}) is maximal over Z. 

Proof. Suppose that x* is a minimum point for g(x) on X. Define A(y)  = {x E 
X] f(x, y) >- g(x*)}. Then, each A(y)  is a convex set. Let Z be an extreme set of 
X such that x* is a relative interior point of Z, that is, for any x E Z and for 
sufficiently small positive number ~, x* + h(x* - x) E Z. We first show that there 
exists a point 2 in Z satisfying the condition (*) such that I(x*) C_ 1(2). To show it, 
let us consider the partial ordering C_ on B = {I(x) [ I(x*) C I(x), x E Z}.  Since the 
polytope X must be a compact set, so is Z. Thus, for each sequence 

,(x*) c_,(x,) c_ Z(x2) _c.. .  

there exists a subsequence {Xk,} converging to a point x ' E  Z. It follows that 
I(Xk) C I(x') for all k. By Zorn's lemma, B has a maximal element 1(2). Clearly, 2 
is a point in Z satisfying the condition (*). Next, we prove the theorem by 
proving that 2 is also a minimum point. 

For contradiction, suppose that 2 is not a minimum point. Then, for every 
y E I(x*), 2 is an interior point of A(y).  Denote x(a) = x* + ,~(x* - 2). We claim 
that for any positive number ~, x()0 is not in A(y)  for every y El(x*).  In fact, if 
the point x(~) for some positive )t is in A(y) ,  then the point x* as an interior 
point of the segment [2, x()t)] can be written as 

x* (1 -c)x(x) 

where 0 < c = A/(1 + A) < 1. Thus, we have 

f(x*, y) >~ cf(2, y) + (1 - c)f(x(a), y) > f(x*, y ) ,  
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a contradiction. Since x(A) is in Z for sufficiently small positive number A, there 
exists A E(0 ,  ,V) such that x(A)EZ\l.JyEz~x. ) A(y). For such A, we must have 
I(x(A)) f)I(x*) = 0 because otherwise g(x(A))< g(x*), contradicting the minimali- 
ty of g(x*). For each A, choose y(A) E I(x(A)). Since Y is compact, there exists a 
sequence {Ak}, converging to 0, such that y(A~) converges to y* E Y. Note that 
g(X(Ak) ) =f(x(Ak) , y(Ak) ). Letting k---~,  we obtain g(x*)=f(x*, y*). Thus, 
y* El(x*). Since l(x*) C_I(2), it follows that f(:~, y*) =g($)  >g(x*).  Therefore, 
for sufficiently large k, 

f(~, y(Ak) ) > g(x*). 

Moreover, since y(A,) E I(x(A~)) and y(Ak)~I(x* ), we have 

and 

Thus, 

f(X(Ak), y(A~)) = g(x(Ak) )/> g(x*), 

f(x*, y(Ak) ) < g(x*). 

f(x*, y(Ak) ) < min[f(x(Ak) , y(Ak)), f(~, y(Ak))]. (1) 

Since x* is at the segment [X(Ak) , ~], (1) contradicts the fact that f(x, y) is 
concave with respect to x. [] 
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